bearing technology - rolling element bearing

A rolling-element bearing is a bearing which carries a load by placing round elements between the two pieces. The relative motion of the pieces causes the round elements to roll with very little rolling resistance and with little sliding.
Most rolling element bearings use cages to keep the balls separate. This reduces wear and friction, since it avoids the balls rubbing against each other as they roll, and precludes them from jamming
Even though some other kind of bearings are better in one or another specific attributes, many people think that it gives a pretty good tradeoff between cost, size, weight, capacity and durability. Therefore, it is one of the most widely used in machinery design

TYPES BASED ON ROLLING ELEMENT
There are five types of rolling-elements that are used in rolling element bearings:

> Ball
This kind of bearing uses ball as the rolling elements, runs on the track shaped like a groove
Ball bearings can support both radial (perpendicular to the shaft) and axial loads (parallel to the shaft). For lightly-loaded bearings, balls offer lower friction than rollers. Ball bearings can operate when the bearing races are misaligned. Precision balls are typically cheaper to produce than shapes such as rollers; combined with high-volume use, ball bearings are often much cheaper than other bearings of similar dimensions. Ball bearings may have high point loads, limiting total load capacity compared to other bearings of similar dimensions.
> Cylindrical Roller
Common roller bearings use cylinders of slightly greater length than diameter. Roller bearings typically have higher load capacity than ball bearings, but a lower capacity and higher friction under loads perpendicular to the primary supported direction. If the inner and outer races are misaligned, the bearing capacity often drops quickly compared to either a ball bearing or a spherical roller bearing.

> Needle
Needle roller bearings use very long and thin cylinders. Often the ends of the rollers taper to points, and these are used to keep the rollers captive, or they may be hemispherical and not captive but held by the shaft itself or a similar arrangement. Since the rollers are thin, the outside diameter of the bearing is only slightly larger than the hole in the middle. However, the small-diameter rollers must bend sharply where they contact the races, and thus the bearing fatigues relatively quickly.
> Tapered Roller
Tapered roller bearings use conical rollers that run on conical races. Most roller bearings only take radial or axial loads, but tapered roller bearings support both radial and axial loads, and generally can carry higher loads than ball bearings due to greater contact area. Taper roller bearings are used, for example, as the wheel bearings of most cars, trucks, buses, and so on. The downsides to this bearing is that due to manufacturing complexities, tapered roller bearings are usually more expensive than ball bearings; and additionally under heavy loads the tapered roller is like a wedge and bearing loads tend to try to eject the roller; the force from the collar which keeps the roller in the bearing adds to bearing friction compared to ball bearings.
> Spherical Roller
Spherical roller bearings use rollers that are thicker in the middle and thinner at the ends; the race is shaped to match. Spherical roller bearings can thus adjust to support misaligned loads. However, spherical rollers are difficult to produce and thus expensive, and the bearings have higher friction than a comparable ball bearing since different parts of the spherical rollers run at different speeds on the rounded race and thus there are opposing forces along the bearing/race contact.



TYPES BASED ON LOAD DIRECTION
Based on load direction, bearing can be grouped into three categories :

>> Thrust Bearing
Thrust bearings are used to support axial loads, such as vertical shafts. Commonly spherical, conical or cylindrical rollers are used; but non-rolling element bearings such as hydrostatic or magnetic bearings see some use where particularly heavy loads or low friction is needed.

>> Radial Bearing
Rolling element bearings are often used for axles due to their low rolling friction. For light loads, such as bicycles, ball bearings are often used. For heavy loads and where the loads can greatly change during cornering, such as cars and trucks, tapered rolling bearings are used.

>> Linear bearing
Linear motion roller-element bearings are typically designed for either shafts or flat surfaces. Flat surface bearings often consist of rollers and are mounted in a cage, which is then placed between the two flat surfaces; a common example is drawer-support hardware. Roller-element bearing for a shaft use bearing balls in a groove designed to recirculate them from one end to the other as the bearing moves; as such, they are called recirculating bearings.


DESIGN GUIDELINES
The operating environment and service needs are also important design considerations. Bearings are most likely subjected to high speed, and with higher speed comes more momentum, which cause more friction and leads the groove track to be subjected against abrasion. There comes the lubricants to take part, coating the surface, minimizing friction, and thus, increase the life.
Some bearing assemblies require routine addition of lubricants, while others are factory sealed, requiring no further maintenance for the life of the mechanical assembly. Although seals are appealing, they increase friction, and in a permanently-sealed bearing the lubricant may become contaminated by hard particles, such as steel chips from the race or bearing, sand, or grit that gets past the seal. Contamination in the lubricant is abrasive and greatly reduces the operating life of the bearing assembly. Another major cause of bearing failure is the presence of water in the lubrication oil. Online water-in-oil monitors have been introduced in recent years to monitor the effects of both particles and the presence of water in oil and their combined effect.

Although bearings tend to wear out with use, designers can make tradeoffs of bearing size and cost versus lifetime. A bearing can last indefinitely—longer than the rest of the machine—if it is kept cool, clean, lubricated, is run within the rated load, and if the bearing materials are sufficiently free of microscopic defects. Note that cooling, lubrication, and sealing are thus important parts of the bearing design.

0 comments: